网上有关“六年级上册数学资料”话题很是火热,小编也是针对六年级上册数学资料寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
圆的认识(一)
1.圆中心的一点叫圆心,用O表示.一端在圆心,另一端在圆上的线段叫半径,用r表示.两端都在圆上,并过圆心的线段叫直径,用d表示.
2.圆有无数条半径,有无数条直径.
3.圆心决定圆的位置,半径决定圆的大小.
圆的认识(二)
4.把圆对折,再对折就能找到圆心.
5.圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴.
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长和半圆的周长:
7.圆一周的长度就是圆的周长.半圆的周长等于圆周长的一半加一条直径。
8.圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14.
9.C=πd或C=πr.
10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
圆的面积
11.用S表示圆的面积, r表示圆的半径,那么S=πr^2 S环=π(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400
13.周长相等时,圆的面积最大.面积相等时,圆的周长最小.
百分数的应用
百分数的应用(四)
14.利息=本金乘利率乘时间
比的认识
15.两个数相除,又叫做这两个数的比.比的后项不能为0.16.比的前项和后项同时乘上或除以一个相同的数(0除外).比值不变,这叫做比的基本性质.
六年级全册数学知识点(整个小学阶段和中学都通用,比较重要)
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
和差问题公式
(和+差)÷2=较大数; (和-差)÷2=较小数。
和倍问题公式
和÷(倍数+1)=一倍数; 一倍数×倍数=另一数, 或 和-一倍数=另一数。
差倍问题公式
差÷(倍数-1)=较小数; 较小数×倍数=较大数, 或 较小数+差=较大数。
平均数问题公式
总数量÷总份数=平均数。
一般行程问题公式
平均速度×时间=路程; 路程÷时间=平均速度; 路程÷平均速度=时间。
反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
同向行程问题公式
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
列车过桥问题公式
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
行船问题公式
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速; (顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
仅供参考:
工程问题公式
(1)一般公式:
工效×工时=工作总量; 工作总量÷工时=工效; 工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
盈亏问题公式
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)
鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二 (4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答 略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一 (4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
***植树问题公式
(1)不封闭线路的植树问题:
间隔数+1=棵数;(两端植树)
路长÷间隔长+1=棵数。
或 间隔数-1=棵数;(两端不植)
路长÷间隔长-1=棵数;
路长÷间隔数=每个间隔长;
每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:
路长÷间隔数=棵数;
路长÷间隔数=路长÷棵数
=每个间隔长;
每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:
占地总面积÷每棵占地面积=棵数
求分率、百分率问题的公式
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率。
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减)。
增减分(百分)率互求公式
增长率÷(1+增长率)=减少率;
减少率÷(1-减少率)=增长率。
比甲丘面积少几分之几?”
解 这是根据增长率求减少率的应用题。按公式,可解答为
百分之几?”
解 这是由减少率求增长率的应用题,依据公式,可解答为
求比较数应用题公式
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差。
求标准数应用题公式
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
方阵问题公式
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一 先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二 直接运用公式。根据空心方阵总人数公式得
(10-3)×3×4=84
原价等于现价除以打几折
打几折等于原价除以现价
现价等于原价乘以打几折
六年级数学上第三单元知识点归纳
#六年级# 导语 整理了小学六年级上册数学知识点大全1-7单元,希望对你有帮助!
第一单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?
2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、 乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)
1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”
(2)分率前是“的”字:用单位“1”的量×分率=具体量
例如:甲数是20,甲数的1/3是多少?列式是:20×1/3
4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:
(比少):单位“1”的量×(1-分率)=具体量;
例如:甲数是50,乙数比甲数少1/2,乙数是多少?
列式是:50×(1-1/2)
(比多):单位“1”的量×(1+分率)=具体量
例如:小红有30元钱,小明比小红多3/5,小红有多少钱?
列式是:50×(1+3/5)
3、求一个数的几倍是多少:用 一个数×几倍;
4、求一个数的几分之几是多少: 用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)
第二单元位置与方向(二)
一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法
三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
1、分数除法的意义:
乘法: 因数 × 因数 = 积
除法: 积 ÷ 一个因数 = 另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题
1,解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×1/3=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/3
2、看分率前有没有比多或比少的问题;
分率前是“多或少”的关系式:
(比少):具体量÷ (1-分率)= 单位“1”的量;
例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)
(比多):具体量 ÷ (1+分率)= 单位“1”的量
例如:一种商品现在是80元,比原价增加了1/7,原价多少?
列式是:80÷(1+1/7)
3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5
说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)
例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(1/5+1/10+1/3)
第四单元比
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)
15 ∶ 10 = 3/2
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
比 前 项 比号“:” 后 项 比值
除 法 被除数 除号“÷” 除 数 商
分 数 分 子 分数线“—” 分 母 分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)
例如:15∶ 10 =15÷10=15/10=3/2
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(2)用求比值的方法。注意: 最后结果要写成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2
还可以15∶10 = 15÷10 = 3/2 最简整数比是3∶2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
第五单元圆的认识
一、认识圆形
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/2
8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有2条对称轴的图形是: 长方形;只有3条对称轴的图形是: 等边三角形;只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。
发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。
3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π(pai) 表示。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
4、圆的周长公式: 圆的周长等于圆周率乘直径用字母表示C= πd
(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示
d = C ÷π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr
(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍,
用字母表示 r = C ÷ 2π(r = C / 2π)
5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。在一个长方形里画一个的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)、周长的一半:等于圆的周长÷2
计算方法:2π r ÷ 2 即C半= π r
(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:半圆的周长=5.14 r (推导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。
2、圆面积公式的推导:(1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。
(2)拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
3、圆面积的计算方法:因为:长方形面积 = 长 ×宽
所以:圆的面积 = 圆周长的一半 × 圆的半径
即S圆 = C÷2× r=πr × r=πr
圆的面积公式:S圆 =πr → r = S 圆÷ π
4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)
S环 = πR -πr 或环形的面积公式:S环 = π(R -r )(建议用这个公式)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。
6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。
9、常用各π值结果:π = 3.14;2π = 6.28 ;5π=15.7
10、外方内圆(内切圆)公式S=0.86r 推导过程:S=S正-S圆=d -πr=2r×2r-πr =4r -πr =r ×(4-π)=0.86r
11、外圆内方(外切圆)公式S=1.14r 推导过程:S=S圆-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)
12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。
13、S扇=S圆×n/360;S扇环=S环×n/360
14、扇形也是轴对称图形,有一条对称轴。
15、常见半径与直径的周长和面积的结果。
半径 半径的平方 直径 周长 面积
1 1 2 6.28 3.14
2 4 4 12.56 12.56
3 9 6 18.84 28.26
4 16 8 25.12 50.24
5 25 10 31.4 78.5
6 36 12 37.68 113.04
7 49 14 43.96 153.86
8 64 16 50.24 200.96
9 81 18 56.52 254.34
10 100 20 62.8 314
1.5 2.25 3 9.42 7.065
2.5 6.25 5 15.7 19.625
3.5 12.25 7 21.98 38.465
4.5 20.35 9 28.26 63.585
5.5 30.25 11 34.54 94.985
7.5 56.25 15 47.1 176.625
第六单元百分数
一、百分数的意义和写法
(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:
联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
(二)百分数的和分数的互化
1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。
2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)
(三)常见分数小数百分数之间的互化;
三、用百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。
列式是:15÷20=15/20=75﹪
3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:
(1)百分率前是“的”: 单位“1”的量×百分率=百分率对应量
(2百分率前是“多或少”的数量关系:
单位“1”的量×(1±百分率)=百分率对应量
4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。 方法与分数的方法相同。
解法: (1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 百分率对应量÷对应百分率 = 单位“1”的量
5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
百分率前是“多或少”的关系式:
(比少):具体量÷ (1-百分率)= 单位“1”的量;
例如:大米有50千克,比面粉树少50﹪,面粉有多少千克。
列式是:50÷(1-50﹪)
(比多):具体量 ÷ (1+百分率)= 单位“1”的量
例如:工人做110个零件,比原计划多做了10﹪,原计划做多少个?
列式是:110÷(1+10﹪)
6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
用两个数的相差量÷单位“1”的量 =百分之几
即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。
甲比乙多几分之几的问题,方法A,(甲-乙)÷乙 (建议用)
方法B,甲÷乙-100﹪
例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?
列式是:(50-40)÷40=0.25=25﹪
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。
乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)
方法B, 100﹪-乙÷甲
例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?
(100-90)÷100=0.1=10﹪
说明:多百分之几不等于少百分之几,因为单位一不同。
7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)
8、求价格先降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a﹪)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。
第七单元:扇形统计图
一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。(要在统计图上写出百分率)
三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)
四、应用:1.会观察统计图。
2、你得到什么数学信息?
回答①、***占总体的百分之几;
②、**占的百分比最多,**占的百分比最少;
3、你还能提什么数学问题:**和**一共占百分之几。
数学广角:数与形
1、每幅图的圆点总数都可以看作是两个相同的数相乘的积,这些算式还可以用平方数的形式来表示。 1+3=22 1+3+5=32 1+3+5+7=42得出:从1起连续奇数的和等于奇数个数的平方。
2、从2起连续偶数的和等于偶数个数的平方加偶数个数(即(n2+n),或等于偶数个数乘比偶数个数大1的数即n×(n+1)。
补充内容(位置)
1、我们用数对(数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”)确定点的位置。如数对(3,5)表示:(第三列,第五行)
竖排叫列(从左往右看)横排叫行(从前往后看),先数列再数行。
2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述,平移时图形的现状不变。
3、图形左、右平移: 行不变 ;图形上、下平移: 列不变
补充内容(“鸡兔同笼”问题)
一、“鸡兔同笼”问题的特点:
题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。
二、“鸡兔同笼”问题的解题方法
1、假设法(1) 假如都是兔(2) 假如都是鸡;
(一般假设都是大数(脚多的),再求出两个脚的相差量,用大的相差量除以小的相差量得到小数(脚少的)最后再用总的头减小数得到大数。(我们称为设大得小,设小得大)
例,有34个同学去划船,大船每船坐4人,小船每船坐2人,租12条船刚好坐满,问大船和小船各租了几条。
假设法:
①假设全部是大船则坐12×4=48(人)
②那么实际人数与大船做的人数相差48-34=14(人),
③实际一条大船比一条小船多坐4-2=2(人)
④大的相差量÷小的相差量得到小的量(即得到小船的数量),14÷2=7(条)
⑤总的船减小的船得到大的船12-7=5(条)。(要注意单位)
2、列方程法:例有34个同学去划船,大船每船坐4人,小船每船坐2人,租12条船刚好坐满,问大船和小船各租了几条。
解:设大船有X条,则小船有12-X条
4X+2×(12-X)=34 4X是大船坐的人数,4是大船每船坐4人,2×(12-X)是小船坐的人数,小船每船坐2人,有(12-X)条船,相加就得到总人数34人。2×(12-X)用乘法分配律计算得到24-2X.。
所以4X+2×(12-X)=34
4X+2×12-2×X=34
4X+24-2 X=34
2 X+24=34
2 X=34-24
2 X=10
X=5
12-5=7(条)
答:租大船5条,小船7条。
六年级数学知识点归纳
一、认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C=πdd=C÷π
或C=2πrr=C÷2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2即πr
(2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r
三、比和比的应用
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如15:10=15÷10=(比值通常用分数表示,也可以用小数或整数表示)
∶∶∶∶
前项比号后项比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
比前项比号“:”后项比值
除法被除数除号“÷”除数商
分数分子分数线“—”分母分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的`分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
①用比的前项和后项同时除以它们的最大公因数。
(1)②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。注意:最后结果要写成比的形式。
如:15∶10=15÷10==3∶2
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如:已知两个量之比为,则设这两个量分别为。
6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
小学六年级上册数学《位置与方向(二)》知识点
1.根据方向和距离可以确定物体在平面图上的位置。
2.在平面图上标出物体位置的方法:
先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。
3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
4.绘制路线图的方法:
(1)确定方向标和单位长度。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。
(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。
小学六年级上册数学《分数乘法》知识点
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
人教版小学六年级数学下册知识点
比例
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙 教育 。
7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
六年级数学知识点归纳相关 文章 :
★ 六年级上册数学知识点整理归纳
★ 六年级数学总复习知识点整理(完整版)
★ 小学六年级数学学习方法和技巧大全
★ 小学六年级数学知识点总结
★ 六年级数学上册知识点复习
★ 六年级数学上册知识点总结
★ 六年级数学圆的知识点总结
★ 六年级数学小知识总结
★ 一至六年级数学知识点复习资料整合
关于“六年级上册数学资料”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是丹尼号的签约作者“旗云飞”
本文概览:网上有关“六年级上册数学资料”话题很是火热,小编也是针对六年级上册数学资料寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。圆的认识(一)...
文章不错《六年级上册数学资料》内容很有帮助